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Thermoelectricity is a very important phenomenon, especially its significance in
heat-electricity conversion. If thermoelectric devices can be effectively applied to the
recovery of the renewable energies, such as waste heat and solar energy, the energy
shortage, and global warming issues may be greatly relieved. This review focusses
recent developments on the thermoelectric performance of a low-dimensional material,
bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is
given on, how the nanostructure in nanostructured composites, confinement effects in
one-dimensional nanowires and doping effects in conventional bulk composites plays an
important role in ZT enhancement.
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INTRODUCTION

Thermoelectric (TE) materials can directly contribute toward a global joint solution because they
are capable of converting a thermal gradient into a voltage, and vice-versa, and thus to recover waste
heat (Bell, 2008). Many advantages of this technology can be cited with respect to other approaches
to refrigeration or power generation: Compactness and quietness, scalability, no moving parts,
long, and reliable working life, local cooling or power generation, no need of maintenance and
remarkably, the abundance of waste heat sources present in household and industrial processes
(Rowe, 2006).

The performance of TE devices is assessed using the dimensionless figure of merit ZT =
α2σT/κ , where α, σ , T, and κ are the Seebeck coefficient, the electrical conductivity, the
absolute temperature, and the thermal conductivity, respectively. Because α, σ , and the electronic
contribution to κ involve band structures (e.g., energy gap Eg , effective mass carrier m∗),
and scattering mechanisms, controlling the parameters independently is difficult (Bell, 2008).
Therefore, a ZT-value of 1 has long been considered a benchmark for practical TE materials.
Based on the above relationship, optimally performing TE materials should possess high electrical
conductivity, a large Seebeck coefficient, and low thermal conductivity (Bell, 2008). This review
covers the latest advancement in TE technology focusing on the nanostructural approaches,
provides comprehensive review on recent developments in nanowires and also highlights some
of the most promising thermoelectric material system including Bi-Te alloys, CoSb3 skutterudites,
PbTe, AgSbTe2 etc.
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RESEARCH PROGRESS ON
NANOSTRUCTURED TE MATERIALS

One-dimensional TE Materials: Nanowires
Low-dimensional TE materials such as quantum wells and
nanowires are supposed to have excellent thermoelectric
properties than their bulk counterparts, because of increase
in the density of states (DOS) near Fermi level by quantum
confinement which tends to enhance the Seebeck coefficient. And
also effectively scatters phonon over a large mean free path (mfp)
by high density of interfaces, hence resulting in the lower lattice
thermal conductivity. Remarkable enhancement of ZT has been
reported in one- dimensional (1D) thermoelectric materials.

Large enhancement of ZT inside quantum wires is predicted
through theoretical studies due to its additional electron
confinement. Hicks and Dresselhaus (1993) consider that
nanowires can deliver higher thermoelectric performance
because of stronger quantum confinement and enhanced phonon
scattering, in comparison to bulk counterparts. Till now there
have been various reports on the ZT enhancement in one-
dimensional materials. Dedi et al. (2013) reported PbTe nanowire
with diameter of 217 nm synthesized by stress induced method
exhibited a maximal thermopower of −342μVK−1 at 375K,
which is two times larger than that of its bulk counterpart due
to increase in the DOS of electrons near the Fermi level in the
nanowires. The thermopower and power factor of the nanowires
are shown in Figure 1. Measurement techniques for thermal
conductivity of nanowires are always difficult and challenging,
recently Lee et al. (2013) reported self-heating 3-omega technique

FIGURE 1 | (A) Resistivity measurement; (B) Seebeck coefficient measurement; (C) power factor for PbTe NWs with dw = 75 and 217 nm; and (D) A representation
of the growth mechanism in PbTe NWs using the catalyst-free stress-induced method. Reproduced from Dedi et al. (2013).

that was applied to characterize the thermal conductivity of
individual single crystalline Bi1.75Sb0.25Te2.02 nanobelt with
thickness 250 nm that was prepared by On-Film Formation
method. This platform provides an opportunity to measure the
TE properties including structure analysis on single nanowire,
which would help improve the reliability of the resulting ZT-
value. The measurement platform, power factor and thermal
conductivity of the nanowires are shown in Figure 2. Boukai
et al. (2008) also reported a large enhancement in ZT at low
temperatures (∼150K) due to phonon drag effects (heat current
affecting electrical transport). This is the first time it has been
claimed that phonon-drag can enhance ZT significantly. The
argument is that in rough nanowires, the Seebeck coefficient
can be increased by the transport of certain phonon modes
which have minimal contribution to thermal conductivity. An
interesting study published by Hsiung et al. (2015) reported
ZT = 0.36 can be obtained at room temperature for
180 nmdiameter topological insulator Bi1.5Sb0.5Te1.7Se1.3 (BSTS)
nanowires synthesized by stress-induced method, representing
10 times higher than compared to its bulk counterpart because
of surface-dominated transport and large insulating bulk state in
the BSTS nanowires. The thermal conductivity and power factor
of the nanowires are shown in Figure 3.

Three-dimensional TE Materials:
Nanocomposites
Nanostructured materials are among the strongest candidates for
thermoelectric applications, as they offer a route to suppressing
thermal conductivity without hindering electrical properties.
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FIGURE 2 | (A) The SEM image of the measurement platform with nanobelt suspended on the open window; (B) the Seebeck coefficient measurement; (C) the
resistivity measurement, inset represents power factor for the nanobelt; (D) the thermal conductivity result measured for Bi1.75Sb0.25Te2.02 nanobelt with thickness
250 nm by 3ω method. Reproduced from Lee et al. (2013).

Second phase endotaxial nanostructuring (Ikeda et al., 2007),
metal nanoparticle decoration (Lee et al., 2012), and most
recently all-length scale phonon scattering (Biswas et al., 2012)
have been experimentally proved to be effective routes to improve
the ZT through significant reduction of the lattice thermal
conductivity, κlat.

AgSbTe2 Based Chalcogenide
The best studied bulk nanocomposite material is based on
p-type Silver Antimony Telluride (AgSbTe2), one of the
traditional thermoelectric materials, which spontaneously forms
nanostructures efficiently scatters phonons, without the need
for artificial nanostructuring confirmed from neutron scattering
and high resolution transmission electron microscope (HRTEM)
investigations (Ma et al., 2013). Several studies have reported on
effect of natural formation of nanoscale impurities on matrix and
its contribution on ZT improvements in bulk nanostructured
AgSbTe2 materials come from very large reduction in κ lat(Xu
et al., 2010; Zhang et al., 2010; Du et al., 2011). The Ternary
chalcogenide AgSbTe2 has already gained attention for both
thermoelectric and optical phase-change applications, because
of its extremely low thermal conductivity, κ tot = 0.6 ∼
0.7W/m/K (Hockings, 1959; Morelli et al., 2008). AgSbTe2 is
widely identified as a rock salt NaCl type (Fm-3m) where Ag
and Sb randomly occupying the Na site whereas Te is located
at the Cl position shown in Figure 4A. Its lattice component
κ lat, dominates largely on the total thermal conductivity, which

is related to the propagation of phonons. The κ lat in rock salt
AgSbTe2 is about three fold lower than that of PbTe at around
room temperature. It has been reported that band gap ∼0.35 eV
at room temperature were obtained by optical diffuse reflectance
measurements, whereas strong degenerate nature reflects the
electrical conductivity. Recently, the AgSbTe2 compound has
attracted considerable attention in constructing so-called bulk
nanostructured TE materials, such as (AgSbTe2)1−x(PbTe)x
(LAST-m) (Hsu et al., 2004), (AgSbTe2)1−x(GeTe)x (TAGS)
(Yang et al., 2008), and AgSbTe2–SnTe (Chen et al., 2012) with
excellent TE properties. TAGS based alloys, which have been
studied for many years and used in National Aeronautics and
Space Administrative (NASA) missions since the early 1970s.
The LAST-m system is an interesting bulk-grown material that
spontaneously forms nanostructures during cooling from the
melt.

Recent studies has been reported that element doping
or substitution technique has succeeded in enhancing the
thermoelectric performance of AgSbTe2 materials by tuning its
electrical and thermal properties (Jovovic and Heremans, 2009).
Moreover, the doping of appropriate semiconductor material
is a potential way to enhance the thermoelectric properties of
AgSbTe2 based alloy by reducing its lattice thermal conductivity
and adjusting its carrier concentration. Du et al. (2010)
investigated AgSbTe2 compounds by selenium (Se) doping; the
electrical conductivity was enhanced greatly with an increase in
the Se doping concentration. In 2014, Mohanraman et al. (2014a)
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FIGURE 3 | (A) A SEM image of the device for Seebeck coefficient and electrical conductivity measurements; (B) resistivity measurements; (C) Seebeck coefficient
measurements; and (D) power factor for BSTS specimens of NW1 (180 nm in diameter), NW2 (230 nm in diameter), and the bulk material (thickness of 140μm).
Reproduced from Hsiung et al. (2015).

reported on AgSbTe2 compound doped with tin (Sn), the Ag2Te
nanoprecipitates with feature size of 100–500 nm were observed
in AgSbTe2 matrix are effective in scattering the phonons
with mid-to-long mean free paths shown in Figures 4B,C and
achieved a ZT ∼ 1.1 at 600K representing an enhancement
greater than 20% compared with a pristine sample shown in
Figure 4D.

Moreover, recent study published by Mohanraman et al.
(2013) on doping effect of bismuth (Bi) on AgSbTe2 material
demonstrated that the Bi doping has significantly enhanced
phonon scattering process through point defects over the entire
temperature range, they possessed lower thermal conductivity
and achieved a high ZT-value∼ 1.0 at 570K shown in Figure 4D.
Mohanraman et al. (2014b) reported on influence of indium (In)
doping in AgSbTe2 material, the results showed enhanced power
factor over 25–30% because of the increase in Seebeck coefficient
related to decreased in carrier concentration and increase of
the effective mass caused by In doping whereas lattice thermal
conductivities were reduced substantially because of lattice
mismatch arise from the dopants and host atoms having different
atomic weights and thus resulted in enhanced phonon scattering.
The highest ZT = 1.35 is achieved for Ag(Sb0.97In0.03)Te2 sample
at 650 K shown in Figure 4D has promising applications in
TE power generation in the intermediate temperature range.
Furthermore, various studies on AgSbTe2 based alloys shows
that the thermoelectric performances have been greatly improved
by suitable types of dopants. Techniques such as doping or
substitution have considerably decreased the lattice thermal

conductivity, particularly in the high temperature range. All
the results show that doping technique for enhancement of
thermoelectric performance for AgSbTe2 based composites is
reliable.

Bi2Te3—bulk Nanocomposites
Bi2Te3 based alloys, the excellent TE materials at room
temperature, are extensively used for the commercial
thermoelectric devices for thermo-cooling application.
Significant enhancement in the ZT-value of Bi2Te3 based
bulk materials has been reported recently (Wood, 1988; Zhao
et al., 2005; Cao et al., 2008; Poudel et al., 2008; Xie et al.,
2009; Kim et al., 2015) shown in Figure 5. Poudel et al. (2008)
reported nanostructure p-type BixSb2−xTe3 system fabricated
by mechanical milling followed by hot pressing, exhibited ZT
≈ 1.4 at 373 K. In their study reveals that ZT enhancement
is partially attribute to reduction of κ lat due to scattering at
the grain boundary and the presence of nanoprecipitates. Melt
spinning followed by spark plasma sintering (SPS) method
fabricated bulk nanocomposite p-type (Bi,Sb)2Te3 ingot with
a ZT-value of 1.56 at 300K published by Xie et al. (2009).
The material features nanocrystalline domains embedded in
matrix composed of 5–15 nm nanocrystals with coherent grain
boundaries are believed to attribute for significant reduction of
thermal conductivity without degrading the electrical properties.
Cao et al. (2008) obtained a high ZT-value of 1.47 at 438
K for Bi2Te3/Sb2Te3 bulk nanocomposite with nanoscale
laminated structures prepared by a simple route involving
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FIGURE 4 | (A) Shows cubic rocksalt structure of AgSbTe2 compound. (B) Ag2Te nanoprecipitates dispersed in AgSb0.97Sn0.03Te2 matrix. Reproduced from
Mohanraman et al. (2014a). (C) Diagrammatic representation of phonon scattering mechanisms and flow of hot and cold charge carriers inside a bulk TE material and
(D) ZT as a function of temperature for Ag-Sb based chalcogenides as thermoelectric materials.

hydrothermal synthesis and hot pressing. Kim et al. (2015)
reported record ZT-value of 2.01 at 320 K due to generation of
dislocation arrays at grain boundaries in Bi0.5Sb1.5Te3 by liquid
phase compaction greatly reduce their thermal conduction,
leading to an enhancement of their thermoelectric conversion
efficiency.

In our point of view, nanocomposites and controlled two-
dimensional coated nanostructures are the solution to effectively
minimize thermal conductivity and promote figure of merit
(ZT). Lan et al. (2012) demonstrated a method to introduce
nano-coating structures into surface of bulk material by using
a hydrothermal process. A fine crystalline layer of Bi2Te3 was
coated onto the surfaces of Bi seed micron-sized particles. After
that, highly densified pellets were successfully obtained by the
subsequent hot-press at around 400 K and a uniaxial pressure of
680MPa for 30min. Binary-phase particles composed of micro-
sized Bi particles and nanosize Bi2Te3 were prepared via the
aforementioned process.

The morphology of the samples is studied by SEM. In
Figure 6A, the difference between before and after the coating
process is shown. The surface of particles after the hydrothermal
process is fuzzier and the EDS analysis shows larger amounts
of Te on the boundary of the two particles. This indicates that
Bi2Te3is very small, or a very thin layer of Bi2Te3 is coated on
the surface of Bi grains. Figure 6B shows that the existence of
boundaries in the bulk sample is more obvious after grinding.
Figure 6Ba shows that grain boundaries can still be observed
by SEM. The EDS mapping analysis (Figure 6Bb) shows larger

amounts of Te along the boundary, and that the coating layer is
less than few micrometers.

The nano-coating process even slightly decreases electrical
resistivity and maintains the values of Seebeck coefficient at the
same value shown in Figures 6C,D respectively. Furthermore,
when the sizes of Bi seed particles decrease, the total thermal
conductivity decrease with the same trend is shown in Figure 6E.
All four samples show similar downward tendency. Because
the TE property of Bi2Te3 near the room temperature is at an
advantageous position, the small decrease of electrical resistivity
and the values of Seebeck coefficient can be explained by
the existence of Bi2Te3 thin layer. Furthermore, the thermal
conductivity κ was gradually diminished while the grain size
was reduced. This also indicates that the quantity of grain
boundaries is influenced by the thermoelectric property. The
coating process might scatter the phonons but not the electrons.
Moreover, the electrical resistivity was also diminished when
the Bi2Te3 was coated on. This may be because the coating
layer is more flexible than the core material making for better
contact of particles than with the single phased material. Hence,
the nano-coating process can increase the figure of merit
(ZT) because the coating layers provide more boundaries and
also prohibit the aggregation of particles within the sintering
process. Increasing the number of grain boundaries could
efficiently reduce the thermal conductivity without the reduction
of electrical conductivity. We found that reducing thermal
conductivity leads to a dimensionless figure of merit ZT ∼
0.278 at ∼300K shown in Figure 6F, more than an appreciable
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FIGURE 5 | Best ZT-values obtained with the various synthesis method for Bi2Te3 based alloys. BM, Ball Milling; HP, Hot Press; ZM, Zone Melting; MS, Melt
spinning; SPS, Spark Plasma Sintering.

FIGURE 6 | (A) SEM images of the particles before (left) and after (right) hydrothermal coating process. (B) a. Shows SEM micrograph of bulk after grinding. b. EDS
mapping analysis shows the amounts of Te were more along the boundary which is clearly indicate the existence of a thin Bi2Te3 layer. A plot of the (C) the electrical
resistivity, (D) the Seebeck coefficient (E) the thermal conductivity and (F) the TE figure of merit (ZT) vs. temperature for hot pressed samples with various sizes of seed
particles and a crystalline Bi ingot. Reproduced from Lan et al. (2012).

improvement over commercial Bi powder treated with the same
hot-press process. We propose a new route for developing
high performance Bi nano-composites by using a hydrothermal

nano-coating process, which have even broader prospects for
commercial applications. The combination of nano-coating
layers and Bi seed particles with subsequent hot-pressed process
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affect the TE properties of the Bi, leading to a significant
enhancement of the figure of merit. The enhancement of ZT was
primarily influenced by an appreciable reduction in the thermal
conductivity. It was due to presence of nanostructured regions
existing within the material as the result of our processing route.

PbTe Nanocomposites
PbTe alloys are one of the premiere TEmaterials for intermediate
range temperature (500–800 K) applications and played a key
role in radioisotope thermoelectric generator for deep space
exploration program as a power source. Recently, Kanatzidis
group has published many reports on significant improvements
in the thermoelectric properties of PbTe based alloys by

nanostucturing and also modification in density of states through
band structures (Zhao et al., 2014) shown in Figure 7. A recent
study published by Biswas et al. (2012) has reported a high record
of ZT-value of 2.2 at 915K for p type PbTe-SrTe system via
grain boundary phonon scattering enabled by nanostructuring to
reduce the thermal conductivity.

CoSb3 Nanocomposites
CoSb3 based skutterudites are highly promising candidate for
medium temperature TE power generation applications because
both n and p type materials with high performance can be
obtained in the same material system. The most remarkable
feature of this compound is that the cage like open structure

FIGURE 7 | Current state of the art in PbTe nanocomposites; the TE figure of merit ZT with various nanoparticle inclusions.

FIGURE 8 | Summary of some of the best ZT-values obtained with the various nanoparticle inclusions for CoSb3 skutterudites.
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are found and can be filled with foreign atoms acting as phonon
rattlers which scatter phonons strongly thus drastically reduces
the thermal conductivity. Nanocomposites, as an efficient way
to reduce the thermal conductivity via grain boundaries and
nanoinclusions, have also been used in CoSb3 based TEmaterials.
Significant advances have been made in recent years with various
kinds of nanoinclusion filling the cages in this compound (Bertini
et al., 2003; Zhao et al., 2006; Li et al., 2009; Yang et al., 2009;
Xiong et al., 2010; Fu et al., 2015) and shown in Figure 8. Fu
et al. (2015) reported formation of core-shell microstructure
in compounds doped with 2% of Ni, has enhanced ZT to
1.07 at 723K. Li et al. (2009) observed in situ formation of
InSb nanoislands in the In0.2Ce0.5Co4Sb12 nanocomposite with
enhanced ZT up to 1.43 at 800K by significant reduction in
thermal conductivity. Zhao et al. (2006) fabricated Yb0.25Co4Sb12
nanocomposite and well distributed Yb2O3 particles synthesized
by in situ reaction. The Yb2O3 nanoinclusions located at the grain
boundaries are effective in scattering phonons, there by increases
the figure of merit and achieved peak ZT of 1.3 at 850 K. Xiong
et al. (2010) has reported formation of GaSb nanoinclusions
for the (GaSb)0.2-Yb0.26Co4Sb12 nanocomposite exhibiting peak
ZT-value of 1.45 at 850 K.

CONCLUSIONS AND OUTLOOK

This review summarizes the recent progress of nanowires;
Ag-Sb based alloys, PbTe, CoSb3 skutterudites, and

Bi2Te3 based nanocomposites. Nanostructures such as
nanoprecipitates, controlled two-dimensional coated
nanostructures, nanoinclusion to atomic defects, and nanoscale
inhomogeneities have been found to be potential routes for
reducing thermal conductivity to a greater extend without
hindering much on electrical conductivity, resulting in an
enhanced figure of merit for the bulk nanocomposite material.
However, additional approaches such as carrier-energy filtering
or quantum confinement effects will likely be key role for
enhancing power factor to achieve further significant ZT
enhancement. Overall from our practical point of view, bulk
nanocomposites shows more exciting than nanowires or
nanobelts because the former can reduce the expenses, scale-up,
and thermal management issues normally related with the
later.
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